Matematika

Pertanyaan

suatu tim sepak bola terdiri dari 11 pemain akan dipilih seorang kapten,gelandang dan penyerang. berapa pilihan dapat dibentuk apabila
a. seorang boleh merangkap
b.seorang tidak boleh merangkap

1 Jawaban

  • Suatu tim sepak bola terdiri dari 11 pemain akan dipilih seorang kapten, gelandang dan penyerang. Banyak pilihan yang dapat dibentuk apabila seorang boleh merangkap adalah 1.331 pilihan dan apabila seorang tidak boleh merangkap adalah 990 pilihan. Hasil tersebut diperoleh dengan menggunakan kaidah pengisian tempat (filling slots) atau bisa juga dengan rumus permutasi. Kaidah pencacahan adalah suatu cara untuk menentukan banyaknya cara yang memungkinkan dari suatu kejadian. Kaidah pencacahan terdiri dari  

    • Kaidah perkalian ⇒ dapat dilakukan bersamaan
    • Kaidah penjumlahan ⇒ tidak dapat dilakukan bersamaan
    • Kaidah pengisian tempat (filling slot)

    Permutasi adalah banyaknya susunan objek-objek berbeda dalam urutan tertentu. Jadi dalam permutasi urutan perlu diperhatikan (AB tidak sama dengan BA). Rumus permutasi:

    [tex]_{n}P_{r} = \frac{n!}{(n - r)!}[/tex], dengan n ≥ r

    Pembahasan

    Diketahui

    Tim sepak bola terdiri dari 11 pemain  

    akan dipilih seorang

    • kapten
    • gelandang
    • penyerang

    Ditanyakan

    Banyak pilihan apabila  

    • a. seorang boleh merangkap
    • b. seorang tidak boleh merangkap

    Jawab

    a) Ada 11 pemain, jika seorang boleh merangkap, banyak pilihan memilih  

    • ketua = 11 pilihan
    • gelandang = 11 pilihan
    • penyerang = 11 pilihan

    Jadi banyak pilihan yang terjadi adalah

    = 11 × 11 × 11 pilihan

    = 1.331 pilihan

    b) Ada 11 pemain, jika seorang tidak boleh merangkap, banyak pilihan memilih  

    • ketua = 11 pilihan
    • gelandang = 10 pilihan (karena 1 orang sudah jadi ketua)
    • penyerang = 9 pilihan (karena 2 orang masing-masing sudah jadi ketua dan gelandang)

    Jadi banyak pilihan yang terjadi adalah

    = 11 × 10 × 9 pilihan

    = 990 pilihan

    Cara lain

    dengan menggunakan rumus permutasi

    Banyak cara memilih 3 orang sebagai ketua, gelandang dan penyerang dari 11 pemain adalah

    = ₁₁P₃

    = [tex]\frac{11!}{(11 - 3)!}[/tex]

    = [tex]\frac{11 \times 10 \times 9 \times 8!}{8!}[/tex]

    = 11 × 10 × 9

    = 990

    Pelajari lebih lanjut  

    Contoh soal lain tentang permutasi unsur sama

    https://brainly.co.id/tugas/9524581

    ------------------------------------------------

    Detil Jawaban    

    Kelas : 12

    Mapel : Matematika  

    Kategori : Kaidah pencacahan

    Kode : 12.2.7

    Kata Kunci : Suatu tim sepak bola terdiri dari 11 pemain akan dipilih seorang kapten, gelandang dan penyerang

Pertanyaan Lainnya